Course Syllabus for Smart and Sustainable Industry PhD (2023-24)

Course title	Complex Networks: Big Data modelling and
	learning
Scientific Discipline	FIS/07
Sector	
Hours of instruction	20 hours
CFU	2 CFU
Semester	-
Goal	The increasing availability of high dimensional
	and heterogeneous data samples (big data) makes
	urgent the development of a scientific background
	including data science and machine learning
	techniques, with applications in many fields.
	This course introduces the fundamental concepts
	in complex networks and exploits this framework
	For rearning purposes.
	random graphs small-world notworks scale-free
	random graphs, small-world networks, scale-free
	and ungungeruized learning algorithms including
	and unsupervised rearning argorithms including
	support voctor machines and doop loarning can
	proficiently exploit the knewledge content
	provided by complex networks
	After explaining the basic centrality measures
	for nodal and edge characterization we will
	discuss the matrix representation of a graph and
	the necessary steps for automated learning.
	hypothesis space overfitting bias and variance
	trade-offs between representational nower and
	learnability, evaluation strategies and cross-
	validation. The course will be accompanied by
	hands-on problem solving with programming in R
	and some tutorial sessions.
Svllabus	- Introduction: graph theory.
	- Different graph models.
	- Nodal and edge characterization.
	- Local and global properties.
	- Community detection.
	- Learning: Basic definitions, bias, variance and
	cross-validation.
	- Supervised Models.
	- Deep Learning.
	- Unsupervised models: Clustering.
	- The use of computational facilities.

Bibliography	 Latora, Vito, Vincenzo Nicosia, and Giovanni Russo. Complex networks: principles, methods and applications. Cambridge University Press, 2017. Introduction to Machine Learning - Ethem Alpaydin - MIT Press 2010 Deep Learning - Ian Goodfellow et al MIT
	Press 2016
Examination method	80% Case study 20% Presentation of the results